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Abstract

La logique du social anticipated, 35 years ago, the current conception of complex adaptive 
systems, where agents behave following some kind of rational behavior, interact among 
themselves and, as a result of those interactions, produce an unintended outcome. The aim 
of this paper is to illustrate Raymond Boudon’s approach by means of an agent based simu-
lation model, where agents represent teenagers who attempt to find a romantic relationship 
looking for a partner within their friendship ties. Partner choice is ruled by a homophilic 
principle which is, in the case of this artificial society, assumed to operate in a very simple 
way: agents look for someone who is similar to them in a given socio-cultural trait. At the 
same time, the value of this trait (which is assumed to be measured on a quantitative scale) 
for every agent is influenced by the values of other agents in the immediate environment. 
It is shown how these two social processes are interdependent, thus producing outcomes 
which are causally related.

Keywords: homophily; partner choice; social contagion; social networks; social simulation. 

Resumen. Contagio social y homofilia en una red romántica: un análisis de simulación

La lógica de lo social avanzó, hace treinta y cinco años, la actual concepción de los sistemas 
adaptativos complejos, en los que los agentes actúan siguiendo alguna forma de comporta-
miento racional, interactúan entre ellos y, como resultado de tales interacciones, producen 
un efecto inintencionado. El objeto de este trabajo es ilustrar la aproximación de Raymond 
Boudon a través de un modelo de simulación basado en agentes, donde los agentes repre-
sentan a adolescentes que intentan mantener relaciones románticas buscando a su pareja 
entre sus lazos de amistad. La elección de pareja se rige por un principio de homofilia que, 
en el caso de esta sociedad artificial, se asume que opera de una forma muy sencilla: los 
agentes buscan a alguien que sea similar a ellos en un cierto rasgo sociocultural. Al mismo 
tiempo, el valor de ese rasgo para cada agente (que, se asume, puede medirse en una escala 
cuantitativa) se ve influenciado por los valores de otros agentes en su entorno inmediato. 
Se muestra cómo estos dos procesos sociales son interdependientes, por lo que producen 
resultados que están causalmente relacionados.

Palabras clave: homofilia; elección de pareja; contagio social; redes sociales; simulación social.
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1. Introduction

The aim of this paper is to illustrate Raymond Boudon’s sociology by means of 
the analysis of a population of artificial agents. These agents represent teenag-
ers who attempt to find a romantic relationship looking for a partner within 
their friendship ties. Partner choice is ruled by a homophilic principle which 
is, in the case of this artificial society, assumed to operate in a very simple way: 
agents look for someone who is similar to them in a given socio-cultural trait. 
At the same time, the value of this trait (which is assumed to be measured on 
a quantitative scale) for every agent is influenced by the values of other agents 
in its immediate environment. By building an agent-based model, I attempt 
to show how these two social processes (contagion of a social trait and partner 
choice) are interdependent, thus producing outcomes (i.e., number of relation-
ships and variation of the trait among agents) which are causally related, even 
if statistical analysis would suggest the contrary.

The analysis briefly summarized here shares, not accidentally at all, a 
number of characteristics with Boudon’s approach to social explanation. It is 
assumed that agents act in a certain social environment which, in this case, is 
fixed. It is also assumed that agents pursue certain goals (having a romantic 
relationship) and that, in pursuing these goals, they adjust their behavior to 
each other. It is also assumed that as an effect of this mutual adjustment a feed-
back process between agents’ actions and their results happens, thus producing 
a number of social outcomes (properties of the system of action) which were 
not intended by the agents themselves.

The paper will proceed as follows: first a brief exposition of the character-
istics of Boudon’s sociology is provided. Then follows a small account of two 
simple simulation models of contagious and partner choice in which every 
social dynamic is considered to be independent of the other, thus making them 
useful as baseline models. Thirdly the social-contagion-and-partner-choice-
model (SCPCM) is briefly described; details of the model can be found in the 
appendix. The most important results of the analysis of the model are then 
shown. Finally, the paper ends with a discussion of the results and a brief valu-
ation of Boudon’s sociology.
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2. The sociology of Boudon

“Complex Adaptive Systems” is the term which has been coined to refer to 
systems – whether social, biological, or of another kind – whose aggregate 
behavior is the result of actions performed by different individuals who con-
tinuously adapt to an environment, which is itself constituted by other indi-
viduals also engaged in an adaptive behavior (Miller and Page, 2007). These 
multiple behaviors, may combine in complex ways to produce self-reinforcing 
dynamics that are difficult to understand. This is so because the behavior that 
emerges from individuals’ mutual adaptations, aggregate behavior, may in fact 
be the product of a long chain of interactions and show patterns that are quite 
distant from individuals’ initial motivations to act.

The conception of social systems as complex adaptive systems was 
advanced, 35 years ago in Raymond Boudon’s pathbreaking books: La logique 
du social (1975) and Le place du désordre (1984). Summarizing Boudon’s theo-
rization:

1) The social explanandum, whether the development of a certain agricultural 
society, the spreading of the use of a new drug among doctors, or the rate 
of anomie in a population, is the product of the combination of individual 
actions.

2) These individual actions are to be explained within a Weberian paradigm, 
which is to say that reasons must be found to account for those actions. 
These “reasons” needn’t be all of the same type. 

3) Individuals themselves act in a given environment, which they usually can-
not control and which influence their actions. Thus, as an example, doctors 
working in a hospital will not be influenced by each other in the same way 
as private practitioners. So, even if they have the same motivation to treat 
ill patients, the influence process will be different in each case.

4) These basic principles lead, depending on the characteristic of the system, 
to reproductive processes, cumulative processes or transformational pro-
cesses. Cumulative and transformational processes imply feedback dynam-
ics between the system of action and its outcomes.

Besides these basic guidelines for theory construction, it is interesting to 
remark on two further features of Boudon’s work: the use of well-established 
sociological knowledge, often from the classic period, to develop his argu-
ments, and the use of simple formal models in order to better present his argu-
ment and make his conclusions easier to understand (and difficult to refute). 
A clear example is his examination of the relative-deprivation effect found in 
Stouffer’s American Soldier by means of a simple lottery model where rewards 
depend on the number of people buying a ticket. This allows him to show 
in a quite straightforward way how higher opportunities of upward mobility 
(environmental conditions) make it reasonable for a larger amount of people 
to “buy a lottery ticket” (Weberian paradigm), thus producing widespread 
frustration (social fact to be accounted for). In this way, Boudon shows how a 
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very simple mechanism operating at the motivational level of action, together 
with certain structural conditions, is enough to account for a perverse unin-
tended social effect which has previously appeared as a sort of contradiction: 
the higher the opportunities the higher the frustration.

Although the potential of this paradigm is successfully demonstrated in 
his writings, one may wonder whether this method would work with more 
complex systems, where less stylized facts are to be explained. What if differ-
ent individuals have different attitudes towards risky options, hold different 
assets, etc. And, even more, what if the decisions in realm A, let’s say working 
opportunities, is somehow interconnected by decisions in realm B, let’s say 
friendship relationships, which is itself ruled by different mechanisms.

Of course these questions are not easy to answer in a rigorous, deductive 
way. Fortunately, there is nowadays a tool that may help: agent-based models 
(ABMs). This tool was not available when Boudon wrote his masterpieces, 
although he was able to use a different type of simulation (micro-simulations) 
in addressing the issue of educational choices. An ABM is a formal and simple 
representation of the reality which, unlike other formal and simple represen-
tations (such as differential equations), can easily deal with heterogeneity in 
a population of individuals (that is, individuals may differ in many traits), as 
well as with decision rules other than rationality. ABMs are thus nicely suited 
for analyzing complex adaptive systems. 

These models have several applications. By means of empirically calibrat-
ing their parameters, they have been used to explain real data, such as fertility 
trends in France (González-Bailón and Murphy, 2013), local youth unem-
ployment rates in Stockholm (Hedström, 2005), or educational achievement 
in France (Manzo, 2013). Whatever the empirical applications, in the realm 
of sociology ABMs are also a formal tool for developing and exploring the 
implications of middle-range theories (Gilbert, 2008). According to this aim, 
which is also the aim of this paper, ABMs are mainly used to explore the logi-
cal consequences following from a set of assumptions about the characteristics 
of agents, their rules of interaction, and the characteristics of the environ-
ment. The main theoretical and methodological implications of these kinds 
of models, related to the sociology of Boudon, are: bottom-up explanations, 
the analysis of cumulative systems and the production of artificial experiments.

2.1. Explanations, generative social science and mechanisms

As Epstein and Axtell (1996) nicely put it at the end of their pathbreaking 
Growing Artificial Societies, where the now well-known Sugarscape model is 
analyzed: 

From an epistemological stand point, what “sort of science” are we doing 
when we build artificial societies like Sugarscape? Clearly, agent-based social 
science does not seem to be either deductive or inductive in the usual senses. 
But then what is it? We think generative is an appropriate term. The aim is 
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to provide initial micro-specifications (initial agents, environments and rules) 
that are sufficient to generate the macrostructure of interest. We consider a 
given macrostructure to be “explained” by a given micro-specification when 
the latter’s generative sufficiency has been established. (p. 177)

This “generative” approach, which implies that a given social pattern is 
explained from the bottom-up, provides a sensible answer to the micro-macro 
problem masterfully traced by Coleman (1986) ten years earlier. It is also 
very close to Elster (1989) and others’ (e.g., Hedström and Swedberg, 1998) 
defense of “mechanisms” as the building blocks of sociological explanations. 
According to Hedström and Bearman (2009: 5), a mechanism “refers to a 
constellation of entities and activities that are organized such that they regu-
larly bring about a particular type of outcome.” Although a common unit of 
analysis in sociology is the individual, nothing in the concept of “mechanism” 
precludes the unit either being a “supra-individual” entity, such as a collec-
tive, or a “sub-individual” entity, such as the components of an individual 
decision-making process (e.g., attitudes, values, emotions, etc.). The concept of 
“mechanism” does not exclude a rational conception of action either. What the 
concept of “mechanism” does imply is that whatever the entities and their rules 
of behavior, it has to be shown that they must regularly produce the outcome 
that is to be explained. This conception of social explanation is essentially the 
same as that proposed in points 1 to 4 summarized above.

2.2. Emergence and cumulative systems

One of the most intriguing characteristics of society is the strong stability of 
many social patterns. Despite the fact that we all have the experience of living 
in an era of change, certain characteristics of society seem either to change 
very slowly or not to change at all. The distribution of wealth among different 
social classes, rules of domestic labor assignment and school achievement rates 
of students of different backgrounds are just a few examples. Assuming that 
all that happens in society is a result of individual actions, the question to 
answer is, how is it that individuals act in ways that produce such aggregate 
patterns, which are often unintended, undesired, and even detrimental to 
many of them?

The answer lies in the fact that the relations individuals produce when 
interacting with one other often produce a “new reality” that, so to speak, 
“traps” individuals. This “new reality” is called an emergent outcome of the 
system. As in the case of undergraduate students living in a residence hall who, 
in a few days, develop a stable system of informal rules concerning the use 
of the common kitchen, once a given distribution of rights and resources is 
established in any realm of society it will likely show a self-perpetuating trend, 
since agents are now forced to mutually adjust their behavior under the new 
conditions, eventually reaching an equilibrium (though possibly “unfair”). 
These complex adaptive systems, where the emergent outcome feeds back on 
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the original system of action, are known as “cumulative systems” (Boudon, 
1979) and are a common object of sociological analysis.

2.3. Research methods and simulation experiments

Both quantitative and qualitative data are essential to produce simulation 
models insofar as these models are not built to reflect someone’s fantasies 
about society. The representation of reality – the model – has to be grounded 
in empirical knowledge of the world if it is to provide an explanation of 
that world at all. However, in any given theory (whatever the theoretical 
style), we will find concepts (e.g., properties of individuals such as “sensitiv-
ity to the influence of others”) with difficult, or even impossible, empirical 
measure. When agent-based modelers are faced with this problem, some 
solution must be found in order to make the simulation run. The solution 
consists of substituting unknown empirical data for random numbers which 
are extracted from a theoretical distribution (this is why the results of ABMs 
must be presented as averages of a sufficiently large number of simulation 
runs). While this procedure may be considered an artifact, notice that it is 
quite honest: the modeler explicitly recognizes the lack of knowledge that in 
a narrative style of theorizing often goes unnoticed (and sometimes hidden 
under a prose whose eventual literary beauty is not an essential element of 
a proper explanation).

This “artificial” way of proceeding has a further advantage, which is key 
for the analytical agenda in social sciences: the possibility of carrying out more 
complex “thought experiments” than those performed in the absence of this 
tool (such as Boudon’s lottery thought experiment). When conducting field 
social research, it is almost impossible to answer “what if” questions that may 
be relevant for increasing the understanding of a social phenomenon. When 
there are competing theoretical understandings of an issue, relevant questions 
arise, such as, “What if the topology of the social network were different?” 
“What if people were not sensitive to others’ expectations?”, etc. Nevertheless, 
by artificially manipulating parameters, it is possible to show whether a given 
prerequisite (e.g., network closure) is actually a necessary condition to “grow 
up” the social pattern.

3. Contagion and homophily in a social network

3.1. A simple model of contagion

“Contagion” is a fairly well known social phenomenon. Since the celebrated 
study of Coleman, Katz and Menzel (1957) on the diffusion of the use of 
“gammanym” among doctors, it is widely accepted that the influence of peers 
on individuals’ decision to accept or refuse a given socio-cultural trait produces 
a kind of “snow-ball process” that can usually be represented with a typical 
S-shaped diffusion curve, where the speed of the process depends on certain 
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characteristics such as the “critical mass” or the network topology. This process 
usually ends with a fairly large proportion of the population adopting the new 
trait (Rolfe, 2009).

An example of this is Stonedhal and Wilensky’s (2008) computational 
model of “virus on a network”. The model represents a network of agents, 
a few of which are “infected by a virus” or, using a more general example, 
hold a certain trait with a dichotomic value. A number of parameters, such as 
the probability of virus-spreading or the probability of recovering after being 
infected, control the diffusion process in this model. However, the result is 
almost always the same. Even under the worst conditions for the spreading 
of infection allowed by the model, a very small number of initially infected 
nodes will foster the spreading of the virus through a large part of the popula-
tion, as soon as there is a small probability of infection (5%) and the network 
is dense enough.

In Stonedhal and Wilensky’s model, the artificial network is produced by 
a very simple algorithm which asks the potential nodes to create links with 
randomly selected partners until a certain number of connections are created. 
This final number of links is the result of multiplying the number of nodes 
by the average node degree (the average number of links per node), which is 
a parameter that can be manipulated in the model. This algorithm almost 
grants that, in every simulation, the topology of the network fits a “small 
world” topology, that is, a network with an average low distance between any 
two random nodes.

Figures 3.1.A and 3.1.B show a typical network generated by this model 
with 200 nodes and an average node degree equal to 20. Parameters that refrain 
diffusion are set to the minimum, and the virus spread chance is set to 5%. 
In figure 3.1.A, the large black circles represent the initial “infected” nodes.

Figure 3.1. A) Virus on a network (initial state). B) Virus on a network (final state)

A B



560 Papers 2014, 99/4 Francisco Linares

But what if the trait to be diffused is not a discrete-dichotomous variable, 
but a continuous one? The question can be explored by modifying the initial 
“virus on a network” model in the following way:

a. All nodes have a state variable (representing a social trait) which can adopt 
values between 0 and 9; with the values being randomly assigned.

b. Nodes are sensitive to contagion from others with a probability which is 
controlled by a “social influence” parameter.

c. With probability fixed at point b), the nodes change the value of their traits 
to the median (the use of the median instead of the mean is recommended 
since individuals are not likely to be influenced by extreme options, but 
the main results of the analysis do not depend on the use of this statistical 
measure) of the nodes with which they have a directed link (i.e., nodes 
within a path distance of 1).

Figures 3.2.A and 3.2.B show the same network before and after the 
contagion process is finished. The color of the nodes indicates the “inten-
sity” of their trait, and is darker the lower the values of the trait. It is 
important to note two main differences between these networks: first, a 
clustered distribution substitutes the initial random distribution, so nodes 
with the same color are close to each other. And secondly, the variability of 
the initial distribution has been lowered; which is shown by the fact that, 
in this network, the initial coefficient of variation of the trait decreases 
from 0.6 to 0.3. This process has little sensitivity to the “social influence” 
parameter (i.e., the end of the process is the same even for low chances of 
social influence).

Figure 3.2. A) Virus on a network with a continuous trait (initial state). B) Virus on a network 
with a continuous trait (final state)

A B
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3.2. A simple model of homophily in partner choice

Homophily is a basic principle of the structuring of social relations, meaning 
that similar individuals are connected among themselves more often than dis-
similar ones. This tendency may be the product of the distribution of popu-
lation over relevant social attributes (Blau, 1977), the structuring impact of 
social foci of interaction on individuals’ networks (Feld, 1981), or the prefer-
ences of individuals for similar others (Kossinets and Watts, 2009). Whatever 
its cause, homophilic patterns imply larger homogeneity in social relations than 
would otherwise be expected. It is a well documented pattern in many realms 
of social life (see McPherson et al., 2001 and Cruz, 2013). In the realm of 
partner choice, Bearman et al.’s (2004) analysis of the structure of the roman-
tic and sexual relations of 832 students at “Jefferson High” (a high school 
located in “Jefferson City”) provides an excellent illustration. By conducting 
a series of simulation experiments, the authors conclude that homophily is a 
necessary mechanism (even if not sufficient) to account for the topology of 
this romantic network.

We may replicate a simplified version of that model with the same artificial 
network as in the previous section in the following way:

For every node: 

a) Look for a partner among your directly linked neighbors, following the 
rules:
a. The partner must be single (at the initial state of the simulation all of 

them are).
b. The partner must be of the opposite sex (at the initial stage of the 

simulation sex is assigned with 50% chance).
c. If your sex is male, the partner must be younger than you. If your sex 

is female, the partner must be older than you (age of the nodes ranges 
from 14 to 17).

d. The difference between the values of the trait must be equal to, or lower 
than, 10%

b) With a certain likelihood, which is controlled by a parameter, a relationship 
may be broken.

c) The decisions iterate until no new relationships emerge.

The main results of this model are shown in Table 3.1. The figures (avera-
ges and standard deviations over 50 simulation runs) show that when partner 
choices are not homophilic, the number of relationships created through the 
simulation is higher the higher the value of the probability that a relationship 
will be broken, β. However, when partner choices are homophilic, assuming 
a tolerance to partner’s difference of 10%, the number of relationships crea-
ted is not only lower but also less dependent on the likelihood of breaking 
relationships (β).
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4. A social contagion and partner choice model

In order to analyze how these two basic and simple dynamics interact, I have 
built an agent-based simulation model (which I call SCPCM) where conta-
gious and partner choice co-evolve at the same time within a population of 200 
agents embedded in the same network as figures 3.2.A and 3.2.B. The model 
is fully described in the appendix following the ODD protocol designed by 
Railsback and Grimm (2012). A brief description of SCPCM is provided in 
this section. Afterwards some hypotheses on the expected relationships among 
variables are suggested.

4.1. Brief description of SCPCM

The program was implemented in the Netlogo platform (Wilenski, 1998) and 
reproduces the following steps:

a) One of the agents is randomly chosen.
b) If the agent does not have a partner, the agent is asked to look for someone 

according to the following rules:
a. The partner must be found among linked neighbors
b. The partner must be of a different sex.
c. If the agent is male, the partner must be younger; and the other way 

around if the agent is female.
d. The difference between the values of the trait must be within a range 

of tolerance, which is set by a tolerance-parameter (τ).
c) If a partner is found, both agents engage. This relationship may be broken 

with a probability which is set by a breaking-probability-parameter (β).
d) Whether a partner is found or not, the agent is influenced by its linked 

neighbors according to the following rules:
a. If the agent is not engaged, the value of the agent’s trait becomes the 

median of its linked neighbors.
b. If the agent is engaged, the value of the agent’s trait is determined by both 

the value of the trait of the agent’s partner, weighted by a weight-parameter 
(ω), and the median of the agent’s linked neighbors, weighted by 1 - ω .

In summary, the model contains two different mechanisms of social inter-
action: on the one hand, agents select their partners following a homophilic 

Table 3.1. Number of relationships

No homophily homophily

µ σ µ σ

β = 0.25 68.3 5.4 25.8 4.0

β = 0.50 92.2 9.0 30.4 5.6

β = 0.75 158.2 18.6 30.3 6.0
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Figure 4.1. Flow chart
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rule. The homophilic strength of the choice is determined by parameter τ, 
which ranges from 0 to 1.

On the other hand, agents are influenced by the other agents they are tied 
to, so the values of their traits converge to a central value of the local environ-
ment. This contagious process is, nevertheless, affected by the previous partner 
selection, since the value of the partner’s trait has a special weight. The strength 
of the partner’s influence, relative to other agents’ influence, is determined by 
parameter ω, which also ranges from 0 to 1.

In the end there is a feedback process between partner choice and trait 
contagion: the distribution of trait values influences the agents’ partners’ pool; 
and, at the same time, agents’ choices of partner influence the distribution 
of trait values. These dynamics are summarized in the flow chart above. The 
model attempts to show the outcomes of these reinforcing flows, paying special 
attention to the fact that the variation among agents’ trait values within the 
network is determined by parameters τ, β and ω.

4.2. Hypothesis

Concerning the process of contagion, the variation in the trait distribution 
should be positively associated with tolerance, since tolerant individuals will 
be “comfortable” in a world with high diversity. It should also be negatively 
associated with the weight of the partner’s influence, since if my partner has 
a strong influence on me, overall diversity is reduced. Nevertheless, there is 
not an obvious way to relate it to the probability of breaking a relationship. 
Therefore it can be expected that:

— The higher τ, the higher the coefficient of variation of the trait (H1).
— The coefficient of variation of the trait will not be sensitive to β (H2). 
— The higher ω, the lower the coefficient of variation of the trait (H3).

On the other hand, concerning the partner choice process, it is straight-
forward that as the probability of breaking romantic relationships increases, 
the final number of relationships must also increase. It would also seem quite 
obvious that the higher the tolerance to difference, the number of relationships 
should also increase. Therefore it can be expected that:

— The higher τ, the higher the number of relations (H4).
— The higher β, the higher the number of relations (H5).
— The number of relations will not be sensitive to ω (H6).

5. Results

A series of simulation experiments exploring the parameter space of τ, ω and 
β were conducted; reiterating the simulation 50 times for every experimental 
condition, which amounts to 66,500 simulation runs. The results of these 
experiments show the emergence of patterns which are quite different from the 
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simple models, where every dynamic operated independently. Graph 5.0 shows 
the evolution of the coefficient of variation (%) and number of relations (as 
a percentage of total friendship links) in a typical simulation run. The trends 
are quite clear: the trait variation continuously decreases from roughly 60% to 
roughly 20% as the simulation progresses, while a number of romantic rela-
tionships emerge in the early stages of the simulation. Although some of them 
disappear and new ones appear, the rate to total relations remains practically 
constant throughout the simulation run at a value of roughly 5%.

On the one hand, the number of relations is higher than in the simple 
homophilic partner choice (the data are actually similar to the simple partner 
choice model when homophilic choice is not allowed). On the other hand, 
the standard result in the simple model of contagion is just a special case of 
SCPCM. Thus, the almost deterministic result found in the simple model 
(above), in which the coefficient of variation always decreases from 0.6 to 0.3, 
is no longer valid. In the new model, the coefficient of variation drops below 
that level (as low as 0.13) for most of the combination of values of the param-
eter space, but increases above that value (as high as 0.43) when the values of 
ω are very high.

5.1. Number of romantic relationships

Concerning the number of romantic relationships, the simulation provides 
clear support for hypothesis H5 and H6, as can be easily seen in graphs 5.1, 
5.2 and 5.3, which represent the number of final relationships for every 
combination of the spectrum parameter of τ and ω, when β equals 0.25, 0.50 
and 0.75, respectively1. It is quite obvious that the variation in parameter β 

1. The results shown in graphs are the mean values of 50 repetitions for every combination of 
parameters.

Graph 5.0. Typical simulation run (β = ω = τ = 0.5)
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Graph 5.1. (β = 0.25)
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Graph 5.2. (β = 0.50)
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has the expected effect: the higher the probability of breaking a relationship, 
the higher the number of final relationships. It is not only the expected effect 
but also the greatest effect, since parameters ω and τ do not seem to have 
any influence. This result is clearly counterintuitive, since one would expect 
the number of relations to increase with tolerance to the partner’s trait, as 
suggested by H4.

The linear multivariable regression model estimated for this dependent 
variable clearly confirms the impression produced by the graphs. “Probability 
of breaking a relationship” has the strongest significant effect on the dependent 
variable, while “weight” has no significant effect at all and “tolerance” has a 

Graph 5.3. (β = 0.75)
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Table 5.1. Dependent variable: Number of relations

Model

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.

99% Confidence 
Interval for B

Collinearity 
Statistics

B Std. Error Beta
Lower 
Bound

Upper 
Bound Tolerance VIF

1 (Constant) 30.075 .171 176.289 .000 29.635 30.514

probability-of-
breaking-up

109.753 .203 .738 540.454 .000 109.230 110.276 1.000 1.000

tolerance 8.801 .185 .065 47.606 .000 8.324 9.277 1.000 1.000

weight -.248 .185 -.002 -1.338 .181 -.725 .229 1.000 1.000
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very weak (although significant) effect as shown in Table 5.1, which displays 
the results of the model. The value of R squared for the model is 0.5472.

5.2. Coefficient of variation

The results concerning the coefficient of variation of the trait are even more 
counterintuitive. The trait variation among agents increases as β decreases, but 
only with high values of both ω and τ. If the weight of the partner’s trait is 
high but tolerance to partner’s difference is low or the other way round (i.e., 
tolerance is high but weight is low), the probability of breaking a relationship 
does not seem to have an effect on the coefficient of variation.

Tolerance to partner’s trait and weight of partner’s influence have very 
different effects. On the one hand, the coefficient of variation does not seem to 
be very sensitive to the values of parameter τ. On the other hand, parameter ω 
seems to have a strong influence, as the coefficient of variation of the trait clearly 
increases the higher the values of ω.

The linear multivariable regression model estimated for this dependent 
variable shows (see Table 5.2) that “weight” has the strongest significant effect 
on the dependent variable, but it is positive rather than negative. The effect 
of “tolerance” has the expected direction, although it is rather small. Contrary 

2. It cannot be taken for granted that the distribution of residuals is fairly homoscedastic in 
this statistical model or in the models presented below.

Graph 5.4. (β = 0.25)
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Graph 5.5. (β = 0.50)
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Graph 5.6. (β = 0.75)
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to our expectations, “probability of breaking a relationship” has a significant, 
although small, negative effect. The value of R squared for the model is only 
0.192, implying that the model poorly captures the logic behind the variation 
of the dependent variable.

5.3. Sensitivity to average number of links

A straightforward question regarding these results is whether they are  dependent 
(and if so, to what extent) on the topology of the network. As explained above 
(see the appendix for a more detailed account), the network is created by means 
of an algorithm which randomly assigns links to agents until the number of links 
per agent fits a certain average node degree parameter, which has been set to 20 
throughout the whole range of simulations. 

Table 5.2. Dependent variable: Coefficient of variation of trait

Model

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.

99% Confidence 
Interval for B

Collinearity 
Statistics

B Std. Error Beta
Lower 
Bound

Upper 
Bound Tolerance VIF

1 (Constant) .181 .001 353.862 .000 .180 .183

probability-of-
breaking-up

-.030 .001 -.090 -49.124 .000 -.032 -.028 1.000 1.000

tolerance .018 .001 .059 32.170 .000 .016 .019 1.000 1.000

weight .129 .001 .424 232.622 .000 .128 .131 1.000 1.000

Graph 5.7.
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In order to answer this question, new simulations were conducted varying 
the average node degree. Graphs 5.6 and 5.7 show the number of relations 
and coefficient of variation when the average node degree equals 4 (i.e., agents 
have 4 links on average) and the probability of breaking a relationship equals 
0.5 (so they can be compared to graphs 5.2 and 5.5). The influence of average 
node degree on the number of relations is obviously a deterministic outcome 
of the model: since agents choose their partners from among their linked 
neighbors, the lower the number of ties, the lower the number of romantic 
relationships. The estimated regression model (see Table 5.3) shows a strong 
significant effect for this variable. The R squared for this model increases to 
0.743. 

Table 5.3. Dependent variable: number of relations

Model

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig

99% Confidence 
Interval for B

Collinearity 
Statistics

B Std. Error Beta
Lower 
Bound

Upper 
Bound Tolerance VIF

1 (Constant) -12.346 .162 -76.092 .000 -12.764 -11.928

probability-of-
breaking-up

109.790 .153 .738 716.837 .000 109.396 110.185 1.000 1.000

tolerance 8.773 .139 .065 62.921 .000 8.413 9.132 1.000 1.000

weight -.253 .140 -.002 -1.811 .070 -.613 .107 1.000 1.000

average-node-
degree

3.394 .008 .442 429.131 .000 3.374 3.415 1.000 1.000

Graph 5.8.
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On the other hand, the influence of average node degree on the coefficient 
of variation is less straightforward. The linear multivariable regression model 
estimated for the coefficient of variation (see Table 5.4) shows that “average 
node degree” has the strongest significant effect, which is negative. The effects 
of “weight”, “probability of breaking a relationship” and “tolerance” are similar 
to the model shown in Table 5.2 above. The value of R squared increases to 
0.507 in this model.

6. Discussion

Summarizing, in SCPCM the probability of breaking a relationship has a 
very strong positive effect on the number of relations, and a weak (but still 
significant) negative effect on trait variation. Tolerance to others has a positive 
significant effect on both variables, but in every case this effect is rather small. 
The strongest effects on trait variation comes from the average node degree 
and from the weight of partner influence (which has no effect at all on the 
number of relations).

There are a number of counterintuitive results that should be stressed. 
One would expect higher levels of trait variation the higher the tolerance; 
however, tolerance to others has no strong effect on trait variation. In the model, 
the coefficient of variation invariably falls, mainly driven by the number of 
available ties per agent and the weight of partners’ influence. These effects 
are also counterintuitive insofar as one would expect the influence of these 
variables to operate in the opposite direction than they actually do. The trait 
variation should be expected to increase as the number of different neighbors 
also increases, and to decrease as the weight of partner’s influence increases. 
But the statistical tests show that it actually happens the other way round. 
Why is this so?

The dynamic of the simulation model allows us to understand this puzzle. 
Because the process of contagion is necessarily stronger the denser the network 
of ties, the diversity among agents is reduced (and, at a network level, the 

Table 5.4. Dependent variable: coeficient of variation of trait

Model

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig

99% Confidence 
Interval for B

Collinearity 
Statistics

B Std. Error Beta
Lower 
Bound

Upper 
Bound Tolerance VIF

1 (Constant) .302 .001 599.056 .000 .301 .304

probability-of-
breaking-up

-.030 .000 -.090 -63.098 .000 -.031 -.029 1.000 1.000

tolerance .018 .000 .059 41.360 .000 .017 .019 1.000 1.000

weight .129 .000 .424 297.775 .000 .128 .131 1.000 1.000

average-node-
degree

-.010 .000 -.561 -393.762 .000 -.010 -.010 1.000 1.000
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emergence of a number of trait-clusters is fostered); a result which has already 
been observed in previous models (Schelling, 1978; Axelrod, 1997). Further-
more, when the influence of the (similar) partner has a higher weight than 
the influence of other linked neighbors, homophilic choices of partners seem 
to reinforce the homogenization effect of social contagion. To the best of my 
knowledge there is no previous research accounting for this effect nor a clear 
explanation of why tolerance does not have a strong, statistically significant 
influence on trait variation.

Finally, an important result of the analysis is that since the effect of 
“weight” on the trait variation necessarily depends on the number of roman-
tic relationships created through the simulations, and because this number is 
only a small proportion of the total amount of relations (unlikely to be higher 
than 5%), it follows that the behavior of a small number of agents has a strong 
impact on the evolution of the whole system, which is an usual feature of 
complex adaptive systems. 

7. Conclusion

One of the most interesting features of Raymond Boudon’s sociological theory 
is the use of simple “thought experiments” in order to ascertain the basic logic 
underlying the emergence of “social facts”. This methodology can be widely 
extended nowadays by means of agent-based models, a computational tool for 
analyzing complex adaptive systems, such as those which are usually the object 
of sociological analysis. Following Boudon’s approach, in this paper we have 
built a “thought experiment” whose goal is to ascertain the joint consequences 
of a contagious process and a homophilic partner choice in a population of 
artificial agents.

Agent-based models clearly reproduce the basic principles of Boudon’s 
sociological analysis. In our model, agents are programmed to pursue certain 
goals (i.e., finding a partner) while being sensitive to other agents’ characteris-
tics. Due to the effect of agents’ interactions in a given social environment (a 
social network), some properties of the system (i.e., total number of romantic 
relations and the variation of a trait among agents) change. It is worth noting 
that these system-level changes are driven by very simple mechanisms which 
operate at the level of agent’s behavior (i.e., peer influence and homophilic 
choice). 

Following this generative approach, system properties are shown to emerge 
from a cumulative process: when an agent finds a partner, it has a consequence 
for the agent and for the agent’s partner; but it also has consequences for agents 
to which they are both linked. These consequences may drive other agents to 
change their behavior, and so forth. Of course these long chains of reactions 
cannot be disentangled in the absence of simulation experiments. Since the 
value of partner trait has a special weight, the influence of an engaged agent 
on others will not be the same as that of a “single” agent. Even if engaged 
agents are a minority in every simulation run, their presence has an effect 
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which spreads over the whole network. In the end, it is possible to observe the 
emergence of patterns which were not “intended” by any of agents since they 
are the product of local responses that have global consequences.
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Appendix: Odd protocol

##Overview

1) Purpose: The model aims to explore how two different social dynamics, 
diffusion of a cultural trait and romantic matching, influence each other. 
The specific problem the model addresses is how both of these processes are 
dependent on interaction based on three individual characteristics: sensitiv-
ity to others’ similarity, influence of partner on one’s own decision, and 
likelihood of breaking a romantic relationship. The model explores these 
dynamics in a fixed network of 200 agents which are intended to represent 
teenagers who have friendship relationships which may evolve, if the right 
partner is found, to romantic relationships.

2) Entities, state variables, and scales: The model has three kinds of entities: 
boys, girls and links. The environment consists of a torus of 81x81 patches 
which have no state variable. All agents, whether boys or girls, have the fol-
lowing state variables: sex (boolean), age (numerical), engaged? (boolean), 
partners-memory (list), trait (numerical), and influence-threshold (numeri-
cal). Links represent the type of relationship between two agents by means 
of a color code (see below).

Global variables are: number-of-romantic-relationships (numerical) and trait-
variability (numerical), which are the main outputs of the model. Other global 
variables are set as parameters: likelihood-of-breaking-a-relationship (numeri-
cal) tolerance-to-cultural-difference (numerical) and weight-of-partner-influence 
(numerical). All three of these variables are key parameters to explore in the 
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model. Besides these variables, average-node-degree (numerical) and mean-influ-
ence-threshold (numerical) are parameters that control the average number of 
ties per agent, and the average sensitivity of agents to social influence.

There are no temporal or spatial scales, since real time and/or real environ-
ment are not simulated. 

3) Process overview and scheduling: The model includes the following actions 
executed every time-step in the same order:
1. One agent is randomly chosen.
2. If the agent is not engaged, the agent is asked to look for a partner.
3. If a partner is found, the agent is asked to engage.
4. Whether engaged or not, the agent is always asked to be culturally 

influenced (i.e., change the value of its cultural trait).
5. Variables are updated.
6. The simulation stops after 1200 time steps, which is enough for the 

model to reach an equilibrium point.

##Design concepts

4) Design concepts

Basic Principles: The model attempts to capture the interaction of two dif-
ferent mechanisms: homophily and contagion. Homophily is the principle by 
which people tend to engage in relations with other people similar to them 
in certain traits. For the sake of simplification, only one trait is represented. 
Contagion is a process which produces the spread of a certain trait among 
a population by means of social influence. In the model, agents look for a 
romantic partner similar to them in a certain cultural trait, which is measured 
on a quantitative scale. At the same time, agents are also influenced by their 
relationships, whether romantic or friendship, although these two different 
sources of influence do not have the same weight.

Emergence: The model shows how the dynamics of romantic-matching and 
social influence are interdependent so the rate of variation of the cultural trait 
among the population and the number of romantic relationships both differ 
from the scenario where these two processes are independent. 

Adaptation: Agents perform two kinds of adaptive behavior. They become 
engaged if there is an agent in their local environments who meets the condi-
tions to be chosen as a partner (details below). Second, agents change the value 
of their trait by means of a social influence process (details below).

Objectives: There is not a fitness or utility measure in the model to be opti-
mized. However, agents behave as if they had the goal of finding a romantic 
partner.

Learning: Agents do not learn from past experience.
Prediction: Agents do not predict future conditions.
Sensing: All agents occupy a position in a network, which is assumed to 

not evolve as time progresses. The network represents the web of friendship 
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relationships among teenagers. When searching for a partner and when updat-
ing the value of its cultural trait, every agent has access to state variables of its 
local environment (i.e., other agents it has a direct tie with).

Interaction: Boys and girls in the same local environment interact by mak-
ing (and breaking) romantic relationships (see details below). All agents in the 
same local environment interact by influencing one another on the value of 
their cultural traits (see details below).

Stochasticity: Stochastic processes are used in the initialization in different 
ways. The social network is seeded with random number 1111 in order not 
to confound the effect of variation in the network topology with the effect of 
agents’ behavior. State variables of agents are randomly initialized in every sim-
ulation run. The agent behaving in every simulation is also randomly chosen. 
Since there are 200 agents and the simulation lasts for 1200 ticks, every agent 
has on average 6 chances of engaging in a relationship and being influenced. 
Random numbers are also used in some sub-models (see details).

Collectives: There are two agent sets: boys, who may match with girls 
younger than them; and girls who may match with boys older than them. 
Both boys and girls are the subject of social influence in the same way.

Observation: At the end of every simulation run, the required outputs are: 
a) number of social relationships engaged in through the simulation; b) actual 
coefficient of variation of the cultural trait. Plots show the evolution of these 
indicators through time steps. In addition, it is also shown in the interface 
whether a certain link represents friendship (black links), a current romantic 
relationship (green links) or a past relationship (grey links). Agents are rep-
resented by means of circles whose color shows the value of the cultural trait 
(from light gray for low values to dark gray for high values).

##Details

5) Initialization: The simulation is initialized with 200 agents, whose state 
variables are randomly assigned. Sex is assigned with a 50% chance. The 
age of agents is picked from a uniform distribution within the range 14 to 
17. The trait of agents is picked from a uniform distribution within the 
range 0 to 9. Influence-threshold is set by a parameter between 0 and 1 
(currently set to 1, i.e., maximum sensitivity to influence). The variable 
engaged? is set to false for all agents. Memory of past partners is initially 
empty.

Links are then created with a random seed. The random assignment of 
links to agents ends when the condition of 20 links per agent on average is 
met. This produces a small-world type of network. The procedure is copied 
from Stonedhal and Wilensky (2008).

6) Input data: No input data are required.
7) Submodels:
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Look for a partner:

If an agent is selected to look for a partner it will randomly pick, if any, one of 
its linked neighbors which meets the following three conditions:

a) opposite sex
b) if the agent is male, the partner must be younger. If the agent is female, the 

partner must be older.
c) the absolute difference between the two trait values divided by ten must be 

less than the value set by the parameter tolerance. This grants that agents 
will engage with agents with a very similar trait value when tolerance is low, 
but the pool of possible partners will be larger when tolerance is high.

Get engaged:

If a partner has been selected, the agent checks that the partner is not a mem-
ber on the list of previous partners. Then it includes the partner in this list, 
changes the state of engaged? to true, and asks the partner to do both actions. 
However, if a random number extracted from a uniform distribution between 
0 and 1 is below the value set for the parameter probability of breaking the 
relationship, the variable engaged? is again set to false for both agents.

Get influenced:

Regardless of whether the agent is engaged or not, it will be the subject of 
social influence. If the agent is engaged, the agent’s trait will become equal to 
the value of the trait of its partner, weighted by the value of parameter weight, 
plus the median of the values of its local neighbors, weighted by one minus 
weight. When the agent is not engaged, the value of the agent’s trait becomes 
the median of the value of the agent’s local relationships.


